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The structure and energetics of 3,4HeCs2(3Σu) molecules are analyzed from first principles. Fixing the cesium
dimer at its equilibrium distance, the electronic structure was determined through ab initio methods at the
CCSD(T) level of theory using a large basis set to compute the interaction energies. At the T-shaped geometry,
there is a shallow well with a depth of ∼2 cm-1 placed at R ∼6.75 Å, R being the distance from the center
of mass of Cs2 to He. That depth gradually decreases to ∼0.75 cm-1, while R increases to about 11.5 Å at
linear arrangements. A simple model of adding atom-atom Lennard-Jones potentials with well-depth and
equilibrium distance parameters depending on the angular orientation was found to accurately reproduce the
ab initio points. Using this analytical form, variational calculations at zero total angular momentum are
performed, predicting a single bound level at ∼-0.106 (∼-0.042) cm-1 for the boson (fermion) species.
Further calculations using Quantum Monte Carlo methods are carried out and found to be in good agreement
with the variational ones. On the basis of the present results, such analytical expression could in turn be used
to describe the structure and binding of larger complexes and therefore opens the possibility to further studies
involving such aggregates.

I. Introduction

There has been a truly remarkable progress and fast develop-
ment of a broad variety of methods for producing, trapping,
and controlling atoms in the gas phase, based on techniques
involving laser and evaporative cooling of the samples. The
rapid implementation of ever more sophisticated devices for
manipulating and studying ultracold matter using optical and
electromagnetic fields is currently expanding the interest of such
experiments into areas like condensed matter physics1 and
quantum information processes.2

The successes achieved with mainly alkali metal atoms have
spurred in turn major efforts to extend the findings of ultracold
physics into the realm of molecules for which, however, laser
cooling schemes are not straightforwardly applicable. Hence,
the additional stride into the realm of producing cold and
ultracold molecules and the desire to discover what these
advances have to offer for our understanding of chemical
processes.3-5

Perhaps one the most general ways for cooling molecules
has been to simply immerse them in a very-low-T bath of a
suitable buffer gas, thereby relying on the ensuing elastic
collisions to dissipate the excess molecular energies. This
method has been pioneered by Doyle and co-workers6 and also
implemented by Bakker et al.7 and, although simple in principle,
provides a number of challenges associated with such experi-

ments.8 On the other hand, since one of the most common
species used for this type of cooling has been helium, then it
becomes of importance to be able to know as realistically as
possible the details of the interaction forces between the sample
molecule and the 4He or 3He partners.9,10 These molecules, in
fact, must thermalize to the temperature of the buffer gas before
reaching the wall of the chamber, a feat that requires several
hundred collisions and therefore needs some reliable knowledge
of the relevant He-molecule cross sections at low temperatures
to guide the experimental planning.

Along a different route to producing cold molecules, one
successful variety has been to start from ultracold ensembles
of alkali metal atoms that can be produced through laser cooling
and then by pairing the cold atoms together through either
photoassociation or by magnetic Feshbach resonance tuning.11

In both cases, very low collision energies can be reached (<µK),
thereby producing molecules with little rotational excitation but
into highly excited vibrational states.12

It should have become clear from the above discussion that
the production of alkali metal molecules, either homonuclear
or heteronuclear species, and their further manipulation within
collisional regimes (and indeed using initially a weakly interact-
ing gas like helium) also requires information on the interaction
forces at play and knowledge of the likely structures which could
be formed by such systems at low (from 1 K to 1 mK) and
ultralow (<1 µK) temperatures. The aim of the present paper is
therefore that of investigating the interaction between a well-
studied alkali metal dimer that can be formed by photoasso-
ciation, the Cs2 molecule in its 3Σu electronic state and one
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representative 4He or 3He atom, to analyze the possible bound
structures that are likely to exist for such a weakly interacting
system. The present study is also meant to help shed some light
on the possible behavior of Cs2 as a dopant for superfluid He
droplets, a further low-T situation with broad chemical
implications13-15 that, as important prerequisite, requires some
knowledge of the initial structure of the smallest triatomic
complex. In this context, visible absorption spectra of cesium-
doped cold helium nanodroplets involving the triplet ground
state have been recently reported.16

The following section (Section II) analyses the detailed
features of the relevant potential energy surface (PES) while
Section III discusses the methods to calculate its bound states.
Section IV presents the results obtained, and the conclusions
are given by Section V.

II. The Interaction Potential

A. Ab Initio Electronic Structure Computations. All ab
initio calculations are performed with the Gaussian03 program,17

using the spin restricted single and double excitations coupled
cluster method with perturbative triples [RCCSD(T)] correlating
only the valence electrons. We use Jacobi coordinates (r, R, θ)
to describe the potential surface of HeCs2 complex, where R is
the intermolecular distance of He atom from the center of mass
of Cs2, r is the bond length of Cs2, here fixed at its equilibrium
value req ) 6.8 Å, and θ is the angle between the R and r
vectors.

Angles are incremented by 10° from 0 to 90° and distances
extended out to 24 Å, using different spacings between R values
depending on its orientation. The total number of computed
points was 355. To assess the quality of the calculations,
different choices of basis set expansions were implemented and
tested before carrying out the final calculations. For instance,
the potential curve of the Cs2 molecular partner was generated
by selecting five effective core potentials (ECP) from different
groups within the CCSD(T) approach: the LANL2DZ,17 which
uses 52 primitive GTOs contracted to 24; the Hay-Wadt18 and
the ECP46MWB,19 which use 46 and 50 primitive GTOs
contracted to 16 and 34, respectively; the ECP46MDF,20 which
uses 270 primitive functions contracted to 192; and the
CRENBL21 effective core potential, which uses 88 primitive
GTOs contracted to 80. In Table I, we present the values of req,
and De well-depth, obtained using the above-mentioned ECPs,
together with previous estimations of those magnitudes. The
most recent reported potential energy curve, derived from
fluorescence measurements,22 presents values of 6.235 Å and
279.349 cm-1, in accordance with some earlier theoretical
estimations.23,24 In our calculations, accurate results are obtained
with the use of ECP46MDF. However, CRENBL turned out to

produce a realistic description of the dimer triplet potential curve
(6.8 Å, and 211.683 cm-1), while keeping the computational
effort within acceptable limits. In fact, the latter values are in
line with some other estimates on this system, as 6.35 Å and
233 cm-123 (see Table 7 in that reference). We should note that
CRENBL already includes 5s and 5p electrons in the definition
of the valence space allowing an explicit treatment of
core-valence electron correlation in subsequent calculations.
Keeping this requirement, the particular ECP choice to describe
the dimer is expected to be of minor significance on the He-Cs2

interaction, although slightly deeper wells could be obtained if
pseudopotentials like ECP46MDF were considered. Thus, final
calculations were carried out within the CRENBL choice of
the ECP for the Cs dimer. The basis set for the He atom was
also varied from cc-pVQZ to cc-pV5Z, to aug-cc-pV5Z, and
then to d-aug-cc-pVQZ and d-aug-cc-pV5Z. In this way, the
interaction energies using the supermolecular approach, ∆E )
EHeCs2

- EHe
BSSE - ECs2

BSSE, were obtained. The best choice,
including the BSSE correction,25 turned out to be the d-aug-
cc-pVQZ in terms of strength of the very weak interaction and
feasibility of computational times, producing variations of the
minimum values of the attractive wells that essentially are
coincident with those given by the d-aug-cc-pV5Z choice. For
the two limiting orientations of He with respect to the cesium
dimer, that is, collinear and perpendicular, we present the
dependence of the interaction energies as a function of the R
distance with the basis set in Tables II and III, respectively. As
above-mentioned, the use of d-aug-cc-pV5Z slightly improves
the quality obtaining lower interaction energies with respect to
d-aug-cc-pVQZ. It results, however, too expensive for an
exhaustive search.

B. Analytical Representation of the Potential Surface. To
represent the potential energy surface for the HeCs2 complex,
we used an analytical functional form to fit the CCSD(T) ab
initio points. One common method starts by considering an
expansion in Legendre polynomials, Pλ(cos θ); thus for He-Cs2

we have

with λ ) even (λmax )18) due to the symmetry of the system
with respect to θ ) π/2, using all Nθ ) 10 angles to achieve
convergence. After performing some suitable fit to each V(R, θk),
k ) 1, Nθ, one obtains the Vλ(R) by solving at each R value the
system of linear equations

which involves an initial calculation of the inverse matrix
of Legendre polynomials ≈P

-1, with Pkλ ) Pλ(cos θk). This
constitutes the so-called collocation procedure and is being
currently used for fitting He-dimer PESs.26 However, this
method leads sometimes to undesired results. In particular,
for the system under study that presents weak interaction and
large anisotropy, one finds that the Vλ(R) functions exhibit
large oscillations in regions where one expects that the
nuclear wave functions usually start having an important role.
Indeed, this procedure guarantees the continuity of the
interaction along the R variable for each orientation, but the
reciprocal is not true; at each fixed R, the function along θ

TABLE I: Equilibrium Distance, req, and Well-Depth, De,
Values Obtained through the Use of Different ECPs for the
Cesium Dimera

this work req (Å) De (cm-1)

LANL2DZ17 7.5 132.08
Hay-Wadt18 8.1 237.69
ECP46MWB19 7.8 91.38
ECP46MDF20 6.5 229.61
CRENBL21 6.8 211.68
Expt. Xie et al.22 6.235 279.349
Foucrault et al.23 6.355 233

6.31 267
Li et al.24 6.30 295

a Earlier reported values of these magnitudes are also included.

V(R, θ) ) ∑
λ)0

λmax

Vλ(R)Pλ(cos θ) (1)

V(R, θk) ) ∑
λ)0

18

Vλ(R)Pλ(cos θk), k ) 1, Nθ (2)
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may not be smooth enough. Hence, we decided to perform a
pure analytical fit within a small region of energy (below 5
cm-1) in the two coordinates (R, θ) by assuming that the
potential could be given by the addition of two angle-dependent
He-Cs interactions, each of them described by a Lennard-Jones
function

where d is the well-depth and xj is the equilibrium distance. At
θ ) 0, one realizes that such an addition chiefly reduces to the
interaction of He with the nearest Cs atom. A cubic spline fitting
to the ab initio points presents a minimum of -0.7461 cm-1 at
R ) 11.5116 Å; the nearest Cs atom is here at a distance of
11.5-0.5 × req ) 8.1 Å. Fixing then the equilibrium parameter
xj at 8.1 Å, the fit produces a slightly lower value of d ) 0.7
cm-1. For the perpendicular orientation, the fit to the ab initio
points presents a minimum of -2.0822 cm-1 at R ) 6.7488 Å.

TABLE II: Dependence on the Basis Set Used for the He Atom of Interaction Energies, ∆E (See Text), at the Collinear
Arrangement of He-Cs2

∆E (cm-1)

R (Å) QZ 5Z aug-QZ aug-5Z d-aug-QZ d-aug-5Z

6.00 2327.771 2282.105 2198.207 2173.477 2179.948 2144.296
6.50 952.525 930.859 883.128 877.674 877.092 868.297
7.00 523.800 510.103 472.358 469.742 468.505 467.147
7.50 293.591 284.553 256.521 254.344 251.328 251.031
8.00 155.384 149.515 131.222 129.670 126.016 125.660
8.50 77.383 73.710 62.534 61.598 58.731 58.413
9.00 36.467 34.253 27.632 27.100 25.235 25.033
9.50 16.246 14.946 11.101 10.805 9.663 9.549
10.00 6.740 5.982 3.781 3.619 2.935 2.871
10.50 2.487 2.042 0.789 0.701 0.297 0.261
11.00 0.692 0.425 -0.296 -0.341 -0.575 -0.595
11.20 0.329 0.108 -0.472 -0.506 -0.692 -0.709
11.40 0.087 -0.097 -0.567 -0.593 -0.740 -0.753
11.50 -0.071 -0.168 -0.607 -0.615 -0.743 -0.758
11.60 -0.170 -0.224 -0.612 -0.626 -0.717 -0.753
11.80 -0.227 -0.297 -0.594 -0.626 -0.675 -0.724
12.50 -0.266 -0.338 -0.504 -0.509 -0.545 -0.548
13.00 -0.240 -0.290 -0.401 -0.402 -0.421 -0.421
13.50 -0.197 -0.233 -0.311 -0.310 -0.320 -0.320
14.00 -0.156 -0.182 -0.238 -0.238 -0.242 -0.242
15.00 -0.095 -0.110 -0.141 -0.141 -0.141 -0.140
16.00 -0.058 -0.067 -0.086 -0.085 -0.085 -0.084
17.00 -0.037 -0.043 -0.054 -0.054 -0.053 -0.052
18.00 -0.024 -0.028 -0.035 -0.035 -0.034 -0.033
20.00 -0.011 -0.013 -0.016 -0.015 -0.015 -0.014
22.00 -0.006 -0.007 -0.008 -0.007 -0.007 -0.006
24.00 -0.003 -0.003 -0.004 -0.003 -0.003 -0.002

TABLE III: Same as Table II for the perpendicular Orientation of He-Cs2

∆E (cm-1)

R (Å) QZ 5Z aug-QZ aug-5Z d-aug-QZ d-aug-5Z

0.00 1569.697 1542.587 1485.339 1480.392 1485.508 1479.274
1.00 1289.866 1264.752 1207.830 1203.493 1207.395 1204.355
2.00 749.114 729.726 678.450 673.994 672.051 671.302
3.00 319.697 307.866 274.717 271.238 263.962 263.206
4.00 101.085 95.426 79.843 78.240 72.854 72.264
5.00 23.317 21.084 15.094 14.528 12.197 11.941
6.00 3.042 2.208 0.144 -0.035 -0.874 -0.964
6.50 0.342 -0.182 -1.400 -1.497 -1.985 -2.037
7.00 -0.615 -0.956 -1.698 -1.749 -2.028 -2.057
7.25 -0.777 -1.055 -1.648 -1.683 -1.890 -1.912
7.50 -0.830 -1.059 -1.536 -1.561 -1.715 -1.731
7.75 -0.817 -1.007 -1.397 -1.414 -1.528 -1.539
8.00 -0.769 -0.927 -1.250 -1.262 -1.345 -1.353
8.50 -0.632 -0.745 -0.972 -0.977 -1.020 -1.024
9.00 -0.495 -0.576 -0.741 -0.743 -0.765 -0.766
9.50 -0.379 -0.440 -0.562 -0.562 -0.574 -0.573
10.00 -0.290 -0.335 -0.427 -0.427 -0.432 -0.431
12.00 -0.104 -0.120 -0.153 -0.152 -0.152 -0.151
14.00 -0.043 -0.049 -0.062 -0.062 -0.061 -0.060
16.00 -0.020 -0.022 -0.028 -0.028 -0.027 -0.026
18.00 -0.010 -0.011 -0.014 -0.013 -0.013 -0.012
20.00 -0.005 -0.006 -0.007 -0.006 -0.006 -0.005
22.00 -0.003 -0.003 -0.004 -0.003 -0.003 -0.002
24.00 -0.002 -0.002 -0.002 -0.001 -0.001 0.000

V(x) ) d[(xj/x)12 - 2(xj/x)6] (3)
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Hence, using simple geometrical arguments one arrives at the
values of d ) 2.0822/2 ) 1.0411 cm-1 and xj ) 7.5685 Å. We
then assume a simple dependence of the parameters on the
orientation angle, namely

which reproduces the values of d and xj at θ ) 0, and π/2 as
long as the f(θ), g(θ) sloping functions fulfill the conditions

Simple inspection of the different angular curves reveals that
there is a slower variation of them when increasing θ from the
linear arrangement than when one approaches the latter from
the perpendicular orientation, the behavior being more marked
for the well depths than for the equilibrium values. This suggests
for the f and g functions the use of some power of (1 - cos θ).
In the end, in the interval 0 e θ e π/2, we found suitable to
use

for energies below 5 cm-1 and assume a symmetric behavior
in π/2 e θ e π. In practice, this is equivalent to replacing cos
θ in eq 6 by its absolute value. Figure 1 depicts the V(R, θ)
analytical functions obtained using the procedure outlined above,
together with the ab initio data, for θ ) 0, 30, 50, 60, 70, 80,
and 90°; taking into account the simplicity of the model
proposed, the agreement is really good. In fact, the total averaged
standard deviation is of σ ) 0.027 cm-1 in the energy range
considered, which is assumed to be of major importance in the
calculation of bound states. Larger deviations are found at higher
energies, where the addition of pairwise Lennard-Jones poten-
tials clearly becomes inadequate. A more adequate description

of the short-range region would be obtained by using a modified,
improved version of the Lennard-Jones functional form.27 In
Table IV, we list the deviations obtained at the minimun energy
ab initio point for each θ, as well as the partial averaged standard
deviation, σθ, for each angular value. Figure 2 shows a contour
plot of the analytical surface in terms of (R cos θ, R sin θ) to
give a pictorial view of the very marked shallowness of the

Figure 1. Computed ab initio points (circles) and analytical fits (solid lines), as functions of the relative distance R, at the indicated orientations
of the He atom respect to the Cs2 molecular axis.

d(θ) ) 0.7 + 0.3411 × f (θ)
xj(θ) ) 8.1 - 0.5341 × g(θ)

(4)

f (0) ) g(0) ) 0
f (π/2) ) g(π/2) ) 1

(5)

f (θ) ) f (θ) ) (1 - cos θ)4

g(θ) ) g(θ) ) (1 - cos θ)2
(6)

TABLE IV: Interaction Energies, ∆E (See Text) and
Analytical Potential V(R, θ) Values Together with Their
Deviationsa

(θ, R) ∆E V(θ, R) ∆E - V σθ

(0,11.50) -0.746 -0.7357 -0.010 0.012
(10,11.40) -0.744 -0.7374 -0.007 0.012
(20,11.25) -0.742 -0.7414 -0.0006 0.014
(30,10.75) -0.738 -0.7515 0.013 0.020
(40,10.50) -0.750 -0.7645 0.014 0.024
(50,9.75) -0.783 -0.8145 0.031 0.027
(60,9.00) -0.854 -0.9011 0.047 0.033
(70,8.25) -1.054 -1.0888 0.035 0.030
(80,7.25) -1.564 -1.4975 0.067 0.040
(90,6.75) -2.082 -2.0822 0.0002 0.044

a Energies are in cm-1, angles in degrees, and distances in Å. σθ
is the partial average standard deviation for each θ.

Figure 2. Contour plot of the analytical PES in terms of X ) R cos
θ and Y ) R sin θ. Starting from -2 cm-1, isolines are plotted at
intervals of 0.25 cm-1.
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present interaction; isolines are from -2 cm-1 at intervals of
0.25 cm-1. Note that at cos θ ) 0 the surface, although
continuous, is no longer derivable. This would constitute a

serious drawback for carrying out calculations involving deriva-
tives of the potential, as classical trajectories, but does not imply
any trouble in the present quantum scenario.

As mentioned above, one of the goals of the present fit is to
avoid undesired oscillations in the coefficients Vλ(R) of the
expansion of V(R, θ) in Legendre polynomials. To stress this
issue, at the 10 values of θ the ab initio points were further
adjusted using a cubic spline interpolation. For θ e 60° an
extrapolation at short distances, where ab initio energies become
huge and positive, was done using a Born-Mayer form
(Ae-RR/R). Additionally, at each orientation, a further (-B/R�)
term was added to describe large distances. The corresponding
parameters are listed in Table V. In Figure 3a, we plot the
coefficients obtained after collocation; from λ ) 6, they show
remarkable oscillations that should affect further calculations.
In contrast, the coefficients shown in Figure 3b, coming from
the analytical fit, exhibit as expected a completely regular

TABLE V: Parameters of the Extrapolations at Short and
Long Distances Performed on the ab Initio Data at the 10
Orientations Indicated

θ° A (cm-1) R (Å-1) B (cm-1 Å�) �

0 278137788.4551 1.6608 11457505596.3635 9.1066
10 55009414.4514 1.4339 884619288.9493 8.2934
20 64172089.7800 1.5542 873499408.8709 8.3121
30 4674391.1918 1.2455 112126116.4231 7.6636
40 150801.1967 0.7522 552146980.8035 8.2443
50 20104.3601 0.4721 869999220.3332 8.4562
60 2944.3097 0.0881 459122135.2401 8.2930
70 427528983.9724 8.3151
80 1120216686.4785 8.6731
90 607750454.5666 8.4789

Figure 3. Vλ(R) coefficients of the expansion of eq 1 coming from (a) the numerical fit to the 10 θ values of ab initio data and (b) the analytical
fit.
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behavior. The ab initio data, as well as the full, final PES is
available on request from the authors.

III. Bound State Calculations

A. Variational Method. Considering the cesium dimer as a
pseudo-1Σ partner,28 that is, ignoring spin effects for the
moment, the rovibrational Hamiltonian in the Jacobi coordinate
system has the form29,30

where Be ) 1/mreq
2 is the rotational constant associated to the

diatom frozen at its equilibrium distance req, m being the atomic
mass of cesium. µ ) 2mHem/(mHe + 2m) is the He-Cs2 reduced
mass. V(R, θ) describes the helium-cesium rotor interaction,
while l̂ and ĵ are the angular momentum operators associated
with the vectors R and r, respectively, leading to a total angular
momentum Ĵ ) l̂ + ĵ. More correctly, we should replace in
eq 7 the total diatomic angular momentum ĵ by the nuclear
diatomic rotational angular momentum which, since the elec-
tronic 3Σu state of alkali dimer molecules corresponds31 to a
Hund’s case (b),32,33 reduces to N̂ ) ĵ - Ŝ, Ŝ being the
electronic spin operator. Additionally, we should also incorpo-
rate the spin coupling effects (spin-spin and spin-rotation) in
the more complete Hamiltonian. This extension will be con-
sidered in future work, while we limit the present analysis to
the simplified Hamiltionian of eq 7 or to account for only
diagonal terms of the N̂2 operator. Given the smallness of the
additional coupling terms, however, we do not expect any major
effect on the present conclusions.

A body-fixed (BF) frame, with the ZBF axis parallel to the
vector R̂ is used. We consider basis functions of the form

Here, fn are radial functions associated with the He-Cs2

stretching motion which will be specified later on. In eq 8, the
angular functions W jΩ

JM depend on the orientation of R̂ ≡
(θR, φR) with respect to a space-fixed (SF) reference system,
and on the orientation r̂ ≡ (θ, φ) in the BF frame. They are
expressed as34

where D MΩ
J are Wigner rotation matrices labeled by J, the

quantum number associated with the total angular momentum
J, and by M and Ω, the quantum numbers associated with the
projections of J on ZSF and ZBF, respectively, and YjΩ are
spherical harmonics. The relevant symmetry operators of the
system are those corresponding to the total inversion ε* and
the exchange of cesium nuclei P. The basis functions eq 9 are
already eigenfunctions of P with eigenvalue η ) (-1)j, and
the action of the total inversion over them is

Hence, a symmetry-adapted basis set is defined as

which is eigenfunction of E* with eigenvalue ε, and where

The radial fn(R) functions appearing in eq 8 are numerically
obtained as follows:35 at different fixed orientations θn, n ) 1, N,
one looks for just the ground energy level of the Schrödinger
equation

and the N φ0(R; θn) functions are further orthogonalized through
a Schmidt procedure, which leads to an orthonormal set of
{fn(R)}n)1, N functions.

Once the He-Cs2 interaction is expanded into Legendre
polynomials, and the quadratures over radial functions are
evaluated numerically, all the necessary matrix elements of the
Hamiltonian eq 7 involving angular functions of type eq 9
become analytical.29,30 Depending on the size of the resulting
matrix, the eigenvalue problem is then solved using standard
routines36 or iterative algorithms.37

B. Adiabatic Angular Approach. An additional way to
assess the accuracy of the analytical PES consists in performing
approximate calculations involving just the potential curves
parametrized in the relative He-Cs2 orientation. To this end,
we resort to an earlier adiabatic angular model29 which we used
to describe the vibrational predissociation of triatomic van der
Waals complexes. In this model, the Schrödinger equation
associated to the Hamiltonian of eq 7

is solved, for discrete states, assuming a factorization of the
type

where φ, which describes the vibration along the R coordinate,
is a solution at each orientation θ of the 1D equation

which is nothing but eq 13 for V ) 0. The eigenvalues WV(θ) in
eq 16 constitute an effective potential for the angular motion
described by ψm

(V),

where a suitable average distance Rj has been considered. A
variational solution of eq 17 is fairly straightforward, once the
WV(θ) potentials are expanded in Legendre polynomials using

Ĥ ) - p
2

2µ
∂

2

∂R2
+ Be ĵ2 + lˆ2

2µR2
+ V(R, θ) (7)

ΨnjΩ
JM(R, r̂) ) fn(R)WjΩ

JM(R̂, r̂) (8)

WjΩ
JM(R̂, r̂) ) �2J + 1

4π
DMΩ

J* (φR, θR, 0)YjΩ(θ, φ) (9)

ε*[WjΩ
JM] ) (-1)JWj-Ω

JM (10)

ΨnjΩ
JMεη(R, r̂) ) fn(R)ΘjΩ

JMεη(R, r̂) (11)

ΘjΩ
JMεη ) [2(1 + δΩ0)]

-1/2{WjΩ
JM + ε(-1)JWj-Ω

JM }
(12)

[- p2

2µ
∂

2

∂R2
+ V(R, θn) - W0(θn)]φ0(R;θn) ) 0

(13)

ĤΨ(R, r̂) ) ÊΨ(R, r̂) (14)

Ψ(R, r̂) ) φV(R;θ)ψm
(V)(θ) (15)

[- p2

2µ
∂

2

∂R2
+ V(R, θ) - WV(θ)]φV(R;θ) ) 0 (16)

[Be ĵ2 + lˆ2

2µRj2
+ WV(θ)]ψm

(V)(θ) ) Em
(V)ψm

(V)(θ) (17)
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an angular basis set of type eq 12. The energies, Em
V are then

labeled by a vibrational quantum number V and a rotational
quantum number m, corresponding to the bending motion. This
treatment, in fact, involves an adiabatic approximation29 that
neglects the effect of the angular momentum operators on the
vibrational wave function φV(R; θ)

and is justified for those systems in which the internal (relative)
rotational motion is much slower than the vibrational motion
along the R coordinate.

C. The Quantum Monte Carlo Treatment. The Quantum
Monte Carlo approach which we employ here to calculate the
lowest bound state is divided into two main steps: the optimiza-
tion of the trial wave function ΨT through a minimization
procedure implemented in a Variational Monte Carlo (VMC)
code38 and the use of ΨT to solve by a random walk the
imaginary-time dependent Schrödinger equation in the impor-
tance sampling form

where FD(R) is the quantum force given by

EL(R) is the local energy given by

D ) 1/2 µ with µ being the reduced mass of the complex and
f(R, τ) ) Ψ(R, τ)ΨT(R) is the distribution function.

The trial wave function of the Cs2-3, 4He system takes into
account the correct symmetry of an homonuclear molecule39

where fVImp-He is a Jastrow correlation factor

and PV are the Legendre polynomials.
The Diffusion Monte Carlo (DMC) procedure relies on the

short-time approximation38 and the Schrödinger equation is
solved iteratively in the integral form through a relaxation
process in imaginary time

where τ ) τk+1 - τk becomes now the discretized time step
and the Green’s function, given by

can be interpreted as the “transition” probability to move to a
new position R′ in the time step τ. The projection operator in
eq 25 extracts the ground state wave function Ψ0 from an
arbitrarily chosen initial state, written as a linear combination
of the eigenfunctions Ψi of Ĥ, Ψ0 ) ΣiciΨi, when τ f ∞

The DMC ground state f0 ) Ψ0ΨT is reached by simulating
the imaginary-time diffusion of replicas (walkers) of the system
in the configurational space. The Green’s function is generally
unknown; in the importance sampling DMC framework38,40 the
Green’s function is splitted into two different contributions,
according to the Trotter formula:

The

branching term can be considered as a rate term that rules the
changes in the population of walkers.38 From a “diffusional”
point of view, this technique allows one to simulate the presence
of “sources” and “sinks” in the imaginary time evolution of
the process by replicating or “killing” the walkers. On average,
walkers will die in regions where ΨT > Ψ and give birth in
regions where ΨT < Ψ. The branching scheme we have
implemented is based on the algorithm presented in various
earlier papers.41,42 Each walker is characterized by a cumulative
weight; at the j-th iteration the weight wij for the i-th walker is
given by

where

k2Ψ(R, r̂) ≈ φυ(R;θ)k2ψm
(υ)(θ), k ) j, l (18)

-∂f(R, τ)
∂τ

) -D∇2f(R, τ) + ∇[FD(R)f(R, τ)] +

[EL(R) - ET)]f(R, τ) (19)

FD(R) ) ∇ln|ΨT(R)|2 (20)

EL(R) ) ΨT(R)-1ĤΨT(R) (21)

ln[ΨT(R, cos θ)] ) f0
Imp-He(R)[P0(cos θ) + 1] +

∑
n)1

nmax

{ f2n
Imp-He(R)[P2n(cos θ) + 1] +

f-2n
Imp-He(R)[-P2n(cos θ) + 1]} (22)

fV
Imp-He(R) ) -(p5

R5
+

p3

R3
+

p2

R2
+ p1R + p0 ln R)

(23)

Ψ(R', τk+1) ) ∫G(R' r R, τ)Ψ(R, τk)dR (24)

G(R' r R, τ) ) 〈R'|exp(-τ(Ĥ - ET))|R〉 (25)

lim
τf∞

exp(-τ(Ĥ - ET)) ∑
i

ciΨi(R)ΨT(R) )

lim
τf∞

∑
i

exp(-τ(Ei - ET))ciΨi(R)ΨT(R) )

exp(-τ(E0 - ET))c0Ψ0(R)ΨT(R)

(26)

G(R' r R, τ) = G̃(R' r R, τ) ) Gd(R' r R, τ) ×

Gb(R' r R, τ) ) (4πDτ)-3/2 ×

exp[- [R' - R - DτFD(R)]2

4Dτ ] ×

exp{[ET -
EL(R) + EL(R')

2 ]τ} (27)

Gb ) exp{[ET -
EL(R) + EL(R')

2 ]τ}

wij ) ∏
k)1

j

bik (28)

bik ) exp{[ET -
EL(Ri) + EL(R'i)

2 ]τ}
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The reference energy ET is updated during the random walk,
according to the following formula43

where R is a control parameter (to be chosen small) and N(τj-1)
and N(τj) represent the population of walkers in two successive
steps of the random walk. Updating ET is a fundamental tool to
minimize the fluctuations in the ensemble. Walkers are killed
or replicated by using two parameters wmin and wmax that allow
for the following variable population of walkers:

• if wij < wmin, the i-th walker is destroyed with probability
p- ) 1 - wij and retained with probability p+ ) wij and a weight
equal to the average weight over the ensemble, Wj j ) Σi

Nwij;
• if wij > wmax, the i-th walker is replicated. The number of

replicas is given by Nw
ij ) int(wij + η) where η is uniform

random number ∈ [0, 1]. A new weight wij/Nw
ij is associated at

these Nw
ij walkers;

• in the case wmin e wij e wmax, the i-th walker survives with
no duplicates.

The average over the ensemble at the j-th iteration is

where Wj ) ∑i
Nwij. The final estimate of the observable O is

obtained by the usual definition of Nb blocks of M steps

IV. Calculations and Results

A. Numerical Details. In the calculations presented here,
the following masses (amu) were used: mCs ) 132.9054519,
m3He ) 3.0160374, m4He ) 4.00260324. The Cs2 molecule was
frozen at its equilibrium distance req ) 6.8 Å. A grid of 8192
points in the R range [2-200] Å was employed to solve
numerically eq 13 using a Numerov procedure. The θn values
were chosen as θn ) [1 -(n - 1)/(N - 1)] π/2, n ) 1, N. To
use the original ab initio points, the initial choice was of N )
10; this limit, however, was increased at will when using the
analytical fit of the PES. To speed up the quadratures, an
interpolation of 1000 Gaussian points in the above-mentioned
R range was performed on the {fn} functions. The expansion of
the He-Cs2 analytical interaction in Legendre polynomials was
done by considering 101 Gauss-Legendre points in the [0, π]
interval. To avoid spurious results, a cutoff of 5000 cm-1 was
imposed on the interaction. At a total angular momentum J )
0 and inversion parity ε ) +1, energy convergence to within
10-3 cm-1 was achieved by using N ) 12 and 10 even j values.

The DMC calculations have been carried out by using 2000
walkers; the imaginary-time simulation has been divided into
40 blocks of 60 000 time steps. The time step τ has been chosen
to be equal to 300 for both sytems to achieve a 99.9%
acceptance ratio during the random walk. For wmin and wmax,
we have chosen 0.5 and 2.0, respectively; these values, together
with R ) 1.0, allow us to stabilize the fluctuation of the
population of the replicas.

B. Results. As mentioned above, an indirect way to assess
the quality of the fit consists in applying the adiabatic angular
approximation of Section IIIA to the original ab initio points,
which now provides potential curves at 10 fixed orientations
from 0 to 90° and also to the analytical potential at the same
angular configurations. In both cases, and for all orientations,
solving eq 16 leads to the presence of only one bound level.
The corresponding angular adiabatic energies, W0(θ), are
depicted in Figure 4 and denoted as numerical (from ab initio
points), and analytical, respectively. As can be realized from
inspecting the figure, the results from the analytical surface
overestimate the binding energy up to a maximum of ∼0.05

Figure 4. Effective potentials in the adiabatic approximation: light red lines, from numerical ab initio points; black lines, using the analytical fit.
Also the corresponding angular distributions are depicted with respect to their bound state energies, see text.

ET ) ET + R
τ

ln
N(τj-1)

N(τj)
(29)

〈Ô〉j )
1

Wj
∑
i)1

N

wijOi,j (30)

〈Ô〉 )
∫Ψ0(R)ÔΨT(R)dR

∫Ψ0(R)ΨT(R)dR
=

1
Nb

∑
k)0

Nb-1 [ 1
M ∑

j)k×M+1

(k+1)×M

〈Ô〉j]
(31)
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cm-1 at 90°. After expansion of these effective potentials up to
10 (even) Legendre polynomials, the solution of the angular
motion, eq 17, for J ) 0, ε ) +1, η ) +1, and Rj ) 10 Å,
produces energies E0

0 for the 4He-Cs2 complex of -0.1805 and
-0.1988 cm-1, respectively. Therefore, using the proposed
analytical fit leads to a reduction of the overestimation of the
binding energy by ∼0.02 cm-1, which is in accord with the
standard deviation already found before. The corresponding
angular distributions, |ψ0

0(θ)|2, are also depicted in Figure 4, and
are seen to be nearly identical. They were plotted taking the
origin of the vertical axis at their respective E0

0 energies.
Using the analytical surface, additional variational calculations

were carried out for helium-cesium dimer complexes containing
either 4He or 3He. A single rotationless (J ) 0) state of even
inversion parity ε ) +1 and even interchange of cesium atoms
η ) +1 was found for the two species. Table VI collects the
numerical characteristics of these states. In the bosonic case,
the binding energy is roughly one-half of that predicted through
the adiabatic approximation, a result which constitutes a lower
limit to the binding energy. Inclusion of diagonal coupling terms,
by relaxing conditions of eq 18, in order to also estimate the
corresponding upper limit is presently outside the scope of our
study. In relation with the distribution of rotational diatomic
states, one finds that the j ) 0, 2 states account for more than
98% of that distribution, which is a clear manifestation of the
floppiness of this complex. In turn, the distribution of vibrational
(n) states does not have a simple interpretation. In fact, n does
not denote a quantum number and only labels the corresponding
radial function coming from the orthogonalization procedure.
Since we start from the ground level at θ ) π/2, n ) 1 is the
only unchanged function during the process. It accounts for
almost 60% of the bound state showing the importance of the
T-shaped arrangement for this system.

Concerning the fermionic scenario, the results appear to be
chiefly a consequence of the lighter mass of the 3He (m3He/m4He

= 0.75) partner. However, the binding energy of this complex

is 40% lower than that containing 4He. Because of the error
presumably involved in the ab initio calculations plus that
introduced by the present analytical fit, the presently predicted
value of -0.04 cm-1 should be considered to be merely
indicative of its expected, exact value. Again, the first two
rotational diatomic states account for more than 99% of the
distribution, suggesting that this complex is even more floppy

Figure 5. Probability density (Å-2) of the He atom around the Cs2

molecule in terms of X ) R cosθ and Y ) R sinθ distances (Å).
Variational and DMC results for (a,c) 4He, and (b,d) 3He, respectively.
The cesium atoms are placed at (X,Y) ) ((3.4, 0).

TABLE VI: Rotational (j) and Vibrational (n) Distributions
of the Bound State Found at J ) 0 for Each Helium Isotopea

j E4He ) -0.106 cm-1 E3He ) -0.042 cm-1

0 86.3401250378317 × 10-2 93.608592444636 × 10-2

2 12.3678351471421 × 10-2 5.87530060869408 × 10-2

4 1.15438376393513 × 10-2 4.54365148613764 × 10-3

6 1.21124084530109 × 10-3 5.27232367648316 × 10-4

8 1.41275979301269 × 10-4 7.26608831972656 × 10-5

10 1.99197836306531 × 10-5 1.38016512580359 × 10-5

12 3.39896073941494 × 10-6 3.05529630052595 × 10-6

14 6.01672832839106 × 10-7 5.70884529637803 × 10-7

16 1.09274554622377 × 10-7 8.76893608110321 × 10-8

18 1.39945502705227 × 10-8 9.20826920556535 × 10-9

n E4He ) -0.106 cm-1 E3He ) -0.042 cm-1

1 58.4580298206451 × 10-2 46.8373534785016 × 10-2

2 34.1120748328049 × 10-2 39.4835985102445 × 10-2

3 6.99864483965479 × 10-2 12.1668950931790 × 10-2

4 2.76891022174691 × 10-3 1.10063966120214 × 10-2

5 7.02785084280033 × 10-4 1.09987803481179 × 10-3

6 3.29798897934088 × 10-4 7.99918768777823 × 10-4

7 2.16592307113333 × 10-4 6.51233704831959 × 10-4

8 1.63924965253360 × 10-4 1.03452865432662 × 10-3

9 8.97443573410788 × 10-5 3.86697189366526 × 10-4

10 3.18023063031115 × 10-5 1.22884656037730 × 10-4

11 8.07631156026722 × 10-6 1.89929871446577 × 10-5

12 8.70617420475831 × 10-7 9.98573429769180 × 10-7

a They are of ε ) +1, η ) +1 symmetry. The corresponding
energies are included at the top.
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than the bosonic one. The n ) 1 radial state (θ ) π/2) is also
dominant, although it accounts for less than 50% of the bound
state.

It is interesting to note here how well the DMC final results
on both systems agree with the variational calculations; the
ground state energy for the 4He-Cs2 complex was found to be
-0.1072(9) cm-1, while the corresponding value for the
3He-Cs2 complex was found to be -0.0449(6) cm-1. Clearly,
both findings are very close to the variational calculations
described before.

Figure 5a,b shows the probability densities of either the boson
or fermion He atom, respectively, within the complex. They
were obtained through variational calculations. The coordinates
are X ) R cos(θ) and Y ) R sin(θ), and the contour plots are
on the XY plane. We see that the 4He (Figure 5a) is mainly
located at the T-shaped orientation and at a distance of ∼10 Å
from the dimer center of mass. However, it explores an ample
region of the space which reaches distances larger than 20 Å,
including almost linear arrangements. For the case of the 3He
(Figure 5b), the situation is similar; it shows some preference
for being a T-shaped complex at R ∼10 Å, but the spatial
spreading is much more evident and its bound wave function
clearly populates linear configurations out to R ∼15 Å. The
corresponding probability densities coming from the DMC
calculations are given by Figure 5c,d. They are similar to the
variational ones and essentially cover the same spatial region,
but become less extended. This is in accord with the fact that
the DMC binding energies result slightly higher than those
coming from variational calculations. In particular, the density
corresponding to 4He (Figure 5c) shows a peak clearly more
pronounced than the exhibited by the variational one (Figure
5a).

Figure 6 shows (DMC and variational) radial distributions
of the distance of the bosonic (left panel) and fermionic (right
panel) atoms from the cesium dimer center of mass. From both
type of calculations, and as already seen in the previous figures,
the two species show a maximum at R ∼10 Å, but the extension
of the complexes is quite different as 4He reaches up to ∼30
(∼25 from DMC) Å while 3He shows a non-negligible presence
at 40 (35 from DMC) Å and beyond. As discussed above, DMC
distributions show higher peaks than their variational counterparts.

Figure 7 depicts the corresponding angular distributions in
terms of cos(θ). For 4He it is clear the preference for the T-shape
arrangement, although the distribution explores linear configura-
tions with a probability density of ∼10%. 3He, in turn, prefers
the perpendicular orientation but the linear ones account for
almost 30% of the distribution, thus showing a remarkable
increase of isotropy for its bound state. Both figures also report
the same curves obtained from the DMC calculations and clearly
confirm the good agreement between the results of the two
methods.

To assess the relevance of the electronic spin of cesium dimer
(triplet) in either getting or missing a bound triatomic level, we
have performed additional variational calculations. To this end,
replacing the spherical harmonics YjΩ(θ, φ) in the angular basis
of eq 9 by DΩΣ

j* (φ, θ, 0),44 Σ being the common projection of ĵ
and Ŝ on r, we consider the scenario in which only the diagonal
elements of the N̂2 ) (ĵ - Ŝ)2 operator are accounted for.
Inclusion of nondiagonal terms should lead to an increase
the binding energy of ground triatomic levels. In practice, the
approach reduces to replacing the j(j + 1) terms in the
Hamiltonian matrix by j(j + 1) + S(S + 1) - 2Σ2. For a triplet
state and for its least favored situation of Σ ) 0, these terms
become j(j + 1) + 2 and thus contribute to increasing the
diatomic rotational energy with respect to the pseudo-1Σ
calculations. As a consequence, in the boson (fermion) scenario,
the 1Σ binding energy decreases from -0.106 (-0.042) to
-0.095 (-0.032) cm-1 in the 3Σ framework, while the distribu-
tions of the corresponding states remain almost identical.

Finally, in order to evaluate the effect of fixing the cesium
dimer’s bond length, and within the above-mentioned 3Σ
approximation we have repeated variational calculations at
J ) 0 for different values of r; its variations indeed affect the
diatomic rotational contribution to the energy and also the trimer
interaction energy, a contribution that is automatically included
through our analytical representation. Figure 8 displays for a
broad range of interdiatomic distances the binding energies of
the two species studied. At all the distances considered, the two
triatomic systems are bound with the only exception being the
case of the fermionic species, which at r ) 2 Å becomes
embedded into the continuum of the triatomic complex. Note
that by adding all along these curves the overestimation coming

Figure 6. Radial distributions of boson (left panel) and fermion (right panel) partner in He-Cs2 complexes from variational (solid lines) and DMC
(circles) calculations.
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from the analytical fit, 0.02 cm-1, the two systems indeed remain
bound at the relevant interdiatomic distances.

V. Conclusions

In order to assess as accurately as possible the effects of the
interaction forces on the existence and features of bound states
for this apparently simple but very weakly bound complex, we
have reported new CCSD(T) ab initio calculations of He-Cs2

interaction with the molecular partner in its excited 3Σu electronic
state, freezing the cesium dimer structure at its equilibrium
distance. For 10 different relative orientations from 0 to 90° at
intervals of 10°, distances from helium to the center of mass of
Cs2 ranging from 2 to 20 Å were considered. Relativistic effects
are included with the use of ECPs for Cs atoms, together with
large correlation consistent basis sets.

We have implemented an analytic representation for the
interaction potential of the HeCs2(3Σ) complex. The new

functional form reproduces reasonably well all ab initio data
with energies lower than 5 cm-1 with partial averaged deviations
of ∼0.03 cm-1 (which reduces in fact to ∼0.02 cm-1 as shown
through adiabatic angular dynamical calculations) therefore
allowing us to carry out the study of the three-particle He-Cs2

complex. This initial step is essential for the further analysis of
larger complexes containing several helium atoms where it will
be of interest to analyze the influence of the spin statistics of
the solvent on the behavior of the cesium dimer within or outside
the He droplet.45

We performed bound state calculations using two different
methods, variational and Monte Carlo, as discussed in the
previous sections. Computations for the two possible helium
isotopes predict very small binding energies and large spatial
spreading in both cases, although the fermionic complex results
to be markedly more floppy than its bosonic counterpart. To
assess the effect of the electronic spin of the cesium dimer and

Figure 7. Angular distributions of boson and fermion partner in He-Cs2 complexes from variational (solid lines) and DMC (circles) calculations.

Figure 8. Triatomic energies of He-Cs2 complexes as function of the r interdiatomic distance.
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the effect of fixing its bond length, additional variational
calculations were carried out. The corresponding results show
the robustness of all the approximations involved in the present
study. Together with the ab initio data points, the final, analytic
fit of the corresponding PES is made available to the scientific
community. It will be employed in our group for further analysis
of the structural properties of larger droplets of 3He or superfluid
4He.10,46-53
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